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1. INTRODUCTION

It is the object of this paper to discuss the following question: Is it possible
to characterize unicity and strong unicity of elements of best approximation
by modified Kolmogorov-criteria? Furthermore, we examine the relationship
between these two properties.

Let G be a nonempty set in a normed linear space E, and letfbe an element
of E. Consider P(f):= PG(f) := {go E G: Ilf - go II ~ Ilf - gil, g E G},
i.e., the set of elements of best approximation off in G. The set-valued map
P: E ~ 2G defined in this way is called the metric projection. The set G is
called proximinal (respectively, semi-Chebyshev) if P(f) is nonempty (respec­
tively, contains at most one element) for eachfE E. If G is both proximinal
and semi-Chebyshev, then it is called Chebyshev. For eachfEE let Sf:=
{L E E': II L II = 1, L(f) = Ilfll} and let Ef be the set of extreme points of Sf
in the a(E', E)-topology. We say the pair (go, f), with go E G and fE E\G,
satisfies the Kolmogorov-criterion if, for each g E G,

the strict Kolmogorov-criterion if, for each g E G, g =1= go ,

and the strong Kolmogorov-criterion if there exists a constant K > 0 such
that, for each g E G,

Brosowski [3] proved that a set G in a normed linear space E is a sun if and
only if for each f E E\G the element go EGis in P(f) if and only if the pair
(go, f) satisfies the Kolmogorov-criterion. This result has led us to ask whether
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it is possible to characterize certain semi-Chebyshev sets G in an arbitrary
normed linear space E by the strict Kolmogorov-criterion. In Section 3 we
will see that this is in general not possible, not even if G is a finite-dimensional
subspace of E. But we show in Section 2 that it can be done for finite­
dimensional convex sets G in E = 1A , which includes the cases E = 1<1> =
C(X) and E = hpj ==; Co(T), and for suns G in E = L 1(T, m) using charac­
terizations of best approximations given by Brosowski [3], Deutsch [5],
Deutsch-Maserick [6] and Havinson [9].

Furthermore in general it is not possible to characterize those elements f
in E for which P(f) is a singleton by the strict Kolmogorov-criterion, not
even for the finite-dimensional subspace of the splinefunctions in C[a, b].
But we are able to verify in this case that under certain alternation properties
on f - go the pair (go, 1) satisfies the strict Kolmogorov-criterion.

In Section 3 we show by using results of Bartelt, McLaughlin [2] and
Wulbert [17] that strongly unique elements of best approximation (see
Definition 3.1) can be characterized by the strong Kolmogorov-criterion
in the case when G is a linear subspace in an arbitrary normed linear space E.

Finally we apply our theorems of Section 2 to obtain statements concerning
strong unicity and pointwise Lipschitzian metric projections (see Definition
3.9), which include results of Ault, Deutsch, Morris, Olson [I], Freud [8],
Newman, Shapiro [12], Schumaker [14] and Wulbert [17].

Notation. For a normed linear space E we denote by E' the dual space of
E and by SE := {IE E: Ilfll :(: I} its unit ball. For a set A in E and a function
f defined on E we denote the restriction of f to A by f IA and the extreme
points of A by Ep(A). We say that a set G in E is a convex cone, if G is closed,
convex and ag E G for each g E G and a ;:? O. For a function f defined on a
set T we denote Z(f) := {t E T: f(t) = O}.

2. UNICITY OF BEST ApPROXIMATIONS

The condition that the pair (go, 1) satisfies the strict Kolmogorov-criterion
is sufficient that go is the only best approximation off:

2.1. LEMMA. Let E be a normed linear space, G a nonempty subset of E,
fE E\G and go E G. If (go, 1) satisfies the strict Kolmogorov-criterion then
{go} = P(f).

Proof According to the assumption for each g E G, g =1= go , there exists
a functional LgE Ef - g with Re Ly(g - go) < O. Then for each g E G, g =1= go ,

o
Ilf-gll;:? I Ly(f-g)1 > Re Lg(f-g) + Re L(g-go) = Re Ly(f-go) =
Ilf- go II· Clearly this implies P(f) = {go}'
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In view of Lemma 2.1 it is natural to ask whether semi-Chebyshev sets G
in a normed linear space can be characterized by the strict Kolmogorov­
criterion. As we will see in Section 3 this is not possible even for finite-dimen­
sional subspaces G in an arbitrary normed linear space E. But we are able
to prove theorems of this type for certain normed linear spaces.

First we consider the case E = IA : For a compact space X we denote by
C(X) the space of all real-valued, continuous functions on X endowed with
the usual vector operations and with the norm IIIII = max{l/(x)l: x E E} for
eachlin C(X).

For a locally compact space T we denote by Co(T) the space of all con­
tinuous functions on T, vanishing at infinity, endowed with the usual vector
operations and with the norm

1IIII = sup{l/(t)l: t E T} for eachlin Co(T).

If A is a closed set in X we denote by IA the linear subspace

IA = {IE C(X):/(x) = 0 (x E A)} of C(X).

In particular 1<1> = C(X). Compactifying T by adding a point 00 we obtain a
compact Hausdorff space Xo = T u {oo} and Co(T) may be considered as
h~)} C C(Xo)·

We need the following characterization for the elements of best approxima­
tion in some finite-dimensional convex set of a normed linear spaces given by
Deutsch, Maserick [6] and, independently, by Havinson [9]:

2.2. TH'EOREM. Let G be a convex set in a real normed linear space E, let
IE E\G, go E G and suppose the span G is n-dimensional. Then go E PU) if and
only if there exist m linear independent lunctionals L l , ... , L m E Ef - g and m

• m 0
numbers al , ... , am > 0 wIth Li=l ai = 1, where 1 ~ m ~ n + 1, such that

m

L aiLi(g - go) ~ 0 for each g E G.
i~l

It is well known that for the case E = IA each L E Ef - g is of the form
o

L(h) = (f - go)(x) h(x) for each h E I A
11/-goll

where x E M f - g \A and M f - g = {x E X: l(f - go)(x) I = III - go II}. Theo 0

converse is true for 1<1> = C(X) (see Dunford-Schwartz [7]). Using this fact
and Theorem 2.2 we have the following corollary:
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2.3. COROLLARY. Let G be a convex set of IA , fE E\G, go E G and
suppose the span G is n-dimensional. Then go E P(f) if and only if there exist m
distinct points Xl"'" Xm E M f - g \A and m numbers al ,... , am > 0 with

m 0
Li~l ai = 1 where 1 ~ m ~ n + 1, such that

m

L a;(f - go)(g - gO)(Xi) ~ 0 for each g E G.
i~l

Using Corollary 2.3 we give a characterization of finite-dimensional
convex semi-Chebyshev sets in I A :

2.4. THEOREM. Let G be a finite-dimensional convex set in E = fA • Then
the following statements are equivalent:

(1) G is semi-Chebyshev

(2) For each f E E\G, go E P(f), g E G, g =1= go ,

min {(f - go)(g - go)(x) : x E MHo} < 0

If E = Iq, = C(X) the conditions (1) and (2) are equivalent to the following
statement:

(3) For each f E E\G, go E P(f) the pair (go, f) satisfies the strict
Kolmogorov-criterion.

Proof Assume we have (2), then for fE E\G, go E P(f) and g E G,
g =1= go, there exists a point x E M f - g \A with (f - go)(g - go)(x) < O.

o
Therefore Ilf - go II = l(f - go)(x) I < l(f - go)(x) - (g - go)(x)I =

l(f - g)(x) I ~ Ilf - g II· Thus {go} = P(f). Proving (1).
We show that (2) follows from (1): Assume that there exist fE E\G,

go E P(f) and gl E G, gl =1= go , such that for each x E M f - go

(a)

We show that there exists a function.fo in E with go, gl E P(fo). Since span G
is n-dimensional and go E P(f) by Corollary 3 there exist m distinct points
Xl'"'' Xm E M t - go\A and m numbers al ,... , am > 0 with L~=l ai = 1, where
1 ~ m :S;: n + 1, such that

m

I ai(f - go)(g - gO)(Xi) ~ 0 for each g E G.
i~l

Since al ,... , am > 0 it follows from (a) and (b)

(b)
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and since Xl"'" XmE Mt~u \Ao

We define for each x E X

I ~ i ~ m. (c)

Obviously fo is in E. Then

and because of (c) and Xl"'" X m E Mt~uo\A

I ~ i ~ m.

Therefore lifo ~ go II = II gl - go II·
Because of (b) and al , ... , am > 0 for each g E G there exists a point
Xi E M t - uo\A, 1 ~ i ~ m, with

Therefore by (c) and (d)

(d)

lifo - g II ~ II ({'r!~~~i) (II gl - go II - I(gl - go)(xi)l) + (go - g)(xi)11

= II ({j!~~~i) II gl - go II + (go - g)(xi)11

IU - gO)(Xi)1II II + I( )( )1 >- I' 'I= Ilf - go II gl - go go - g Xi ~! gl - go !

= lifo - go II '

Therefore go E P(fo).
Moreover for each X E X

IUo - gl)(X)I

= I ({,r!~~~i) (II gl - go II - I(gl - go)(x)1) + (go - gl)(X)/

IU - go)(X)I )( )) ( )( )1
~ lif - go Ii (II gl - go II - I(gl - go X I + I go - gl X

~ II gl - go II - I(gl - go)(x)! + I(go - gl)(X) \ = II gl - go Ii,

= lifo - go II·
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Therefore lifo - gIll = lifo - go II and since go E P(f) the function gl is in
P(f). The fact that go , gl E P(f) and gl *' go is a contradiction to G being
semi-Chebyshev. Thus (1) implies (2).

The equivalence of (2) and (3) in the case E = f<b = C(X) follows from the
representation of the extreme points of the unitsphere in C(X)'.

Using Theorem 2.4 we can prove the following necessary condition for
finite-dimensional convex sets G in fA to be Chebyshev, for X metric.

2.5. COROLLARY. Let G be an n-dimensional convex set in E = fA , such
that 0 is in G. If G is Chebyshev then each g E G, g *' 0, has at most n - I
distinct zeros in X\A.

Proof Assume that there exists a function go E G, go *' 0, with n distinct
zeros Xl ,.... X" E X\A. Then by a standard argument there exist n numbers
a1 , ... , an with 2:~~1 I ai 1 > 0 such that for each g EG 2:~~1 aig(xi) = O.
By Tietze's Lemma there exist a function fE E with f(Xi) = sgn ai and
I f(x) 1 < I elsewhere. Then for each g E G 2:;~1 Iai Ifg(Xi) = 2:;~1 I ai I

sgn aig(x i) = 2:;'~1 aig(xi) = O. Replacing, if necessary, each I ai I by
I ai 1/2:;'~1 I ai ; we may assume that 2:;~1 1 ai ! = I.

Therefore by Corollary 2.3 the function 0 is in P(f). Moreover M f =
{Xl' .... Xn} and for each X E M f fgo(x) = O. By Theorem 2.4 it follows that
G is not Chebyshev.

Corollary 2.5 has been proved by Phelps [13] for n-dimensional subspaces
of I A • The converse of Corollary 2.5 does not hold, as can be seen by easily
constructed examples in C({I, 2n.

Now we consider the case E = LI(T, m): For a positive measure space
(T, m) we denote by L1(T, m) (respectively by Loco(T, m)) the space of all
equivalence classes of m-integrable (respectively m-measurable and m­

essentially bounded) real-valued functions on T, endowed with the usual
vector operations and with the norm Ilfll = fr If! dm (respectively, ilfl! =

ess sup{lf(t)l: t E Tn.
A set G in a normed linear space E is called a sun if, for each fE E and

go E P(f), we have go E P(af + (l - a) go) for each a ~ I.
Brosowski [3] proved the following characterization:

2.6. THEOREM. A set G in a normed linear space is a sun if and only if for
each fE E\G, go E G the following statements are equivalent:

(1) go E P(f)

(2) (go, 1) satisfies the Kolmogorov-criterion.

By Singer [15, Lemma 1.13, p. 83] for E = L 1(T, m) with the property
LI(T, m)' = Lce(T, m) a functional L is in Ep(SE') if and only if there exists a
function f3 E LAT, m) such that 1 f3 I = I a.e. on T and L(f) = fT ff3 dm for
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eachfE E. Thus for E = L1(T, m) the pair (go,j) satisfies the Kolmogorov­
criterion (respectively the strict Kolmogorov-criterion) if and only if for
each g E G (respectively g E G, g =1= go) there exists a f3 E La:;(T, m) such that
If3 I= I a.e. on T, fT(f - go)f3 dm = fT If - go I dm and fT (g - go) f3 dm ~ 0
(respectively fT (g - go) f3 dm < 0). Because for a given g E G we replace T
by the union of the supports of f, go and g, which is a-finite, and therefore
we may assume L1(T, m)' = La:;(T, m).

Under application of Theorem 2.6 Deutsch [5] has given the following

2.7. COROLLARY. Let G be a sun in L1(T, m), fE E\G and go E G. Then
go E P(f) if and only iffor each g E G

Using Theorem 2.6 and Corollary 2.7 we can prove the following charac­
terization of semi-Chebyshev suns in L1(T, m):

2.8. THEOREM. Let G be a set in E = L1(T, m). Then the following
statements are equivalent:

(1) G is a semi-Chebyshev sun

(2) For each f E E\G and go E P(f) the pair (go, f) satisfies the strict
Kolmogorov-criterion

(3) For each fE E\G, go E P(f), g E G, g =1= go, there exists a function
f3 E La:;(T, m) such that I f3 I = I a.e. on T,

t (f - go) f3 dm = IT If - go I dm and IT (g - go) dm < 0

(4) For each IE E\G, go EP(j), g E G, g =1= go,

Proof The equivalence of (2) and (3) follows from the remark after
Theorem 2.6. We show that (4) follows from (1): Assume (4) is not true, then
there exist functions f E E\G, go EP(f) and gl E G, gl =1= go , such that

We show that there exists a function.fo E L1(T, m) with go , g E P(fo) and
gl =1= go·
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Since go E P(f) by Corollary 2.7 for each g E G
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Combining (a) and (b) it follows

We define:

Then it holds:

lifo - go!1 = IT If - go I dm

From (c) it follows:

lifo-gIll = !rlfo-gll dm
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Moreover from (b) it follows that for each g E G

lifo - g II = t Ifo - g Idm

+ f Igo - g I dm
zit-yo)

+ f I go - g I dm
z(t-yo)

Therefore go , g E P(f), gl =F go. This is a contradiction to G being semi­
Chebyshev. Thus (1) implies (4).

We show that (3) follows from (4). If we have (4) then for g E G we define

1

sgn(f - go)(t) if t E T\Z(f - go),
fl(t) := sgn(go - g)(t) if t E Z(f - go)\Z(g - go),

1 if t E Z(f - go) n Z(g - go).
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Then I f3 I = I on T and

=J If-goldm =J If-goldm.
T\Z(f-go) T

- fig - go Idm
Z(f-go)

63

Thus (4) implies (3).
If we have (2), the fact that G is semi-Chebyshev follows from Lemma 2.1

and that G is a sun follows from Theorem 2.6. Thus (2) implies (I).
Now we will give some examples of semi-Chebyshev sets in L1(T, m).
First we recall that every convex set in a normed linear space is a sun. An

atom of a positive measure space (T, m) is a measurable set A in T such that
m(A) > 0 and for each measurable set B of A either m(B) = 0 or m(A\B) = o.

2.9. EXAMPLES. 1. The space 1R2 endowed with the norm ll(x, Y)II =
I x I + IY I for each (x, y) E 1R2 is a space of type L1(T, m). It is easy to
verify that the set G = {(x, y) E 1R2: x2 + y 2 ~ I, x < 0, Y < O} is a non­
convex semi-Chebyshev sun in this space.

2. A. L. Garkavi has shown that in L 1(T, m) such that L 1(T, m)' =

LoclT, m) there exists a Chebyshev subspace in L 1(T, m) of dimension n
(respectively, of codimension n) if and only if (T, m) has at least n atoms (see
Singer [10, pp. 233, 331]).

3. Phelps [13] has given an example of a Chebyshev subspace in L 1(T, m)
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which has neither finite dimension nor finite codimension (see Singer [10,
p. 332]). Here it is not necessary that (T, m) contains an atom.

4. Let A be an atom in a positive measure space (T, m) with m(T\A) > 0
and G = {f E LI(T, m): f = 0 on T\A, If(t)1 ~ 1 on A}. Then G is a convex
Chebyshev set in LI(T, m): Letfbe a function in LI(T, m)\G. If If(OI = 1
on A, then for gf E G, defined by gf = f on A and gf = 0 on T\A, it holds:

Ilf - gf II = f If - gf Idm = f If Idm < f If - g I dm
T T\A TlA

+f Igf-gldm=f If-gldm+f If-gldm
A TlA A

= t If - g Idm = Ilf - g II for g E G, g =1= go·

If If(t)1 ~ 1 on A, then for gf E G, defined by gf = 1 on A and gf = 0 on
T\A, it holds:

Ilf-gfil

=f If-gfldm=f If-1Idm+f Ifldm
T A TlA

<f If-gldm+f Ifldm=f If-gldm+f If-gldm
A TlA A TlA

= Ilf - g II for each g E G, g =1= g, .

The casef(t) < -1 on A can be proved similarily.

5. Let A be an atom as in 4., then G = {f E LI(T, m): f = 0 on T\A,
f(t) ~ 0 on A} is a one-dimensional convex Chebyshev cone in LI(T, m).
This can be shown similarily as in 4.

Theorem 2.4 and Theorem 2.8 snow that it is actually possible to charac­
terize certain semi-Chebyshev sets in C(X) and in a certain sense also in
fA , respectively in LI(T, m), by the strict Kolmogorov-criterion.

Considering this fact there is the question if it is possible to characterize
those elements, which have exactly one best approximation in a non-semi­
Chebyshev set, by the strict Kolmogorov-criterion. Examples can easily
be constructed to show that this cannot be done, not even for finite-dimen­
sional subspaces in C(X) that are very close to being Chebyshev as e.g.
subspaces of spline functions in era, b]. But in this case we can show that
under certain alternation conditions the strict Kolmogorov-criterion is valid.

First some definitions: Let a = X o < Xl < ... < Xk < Xk+1 = b be k
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fixed knots in [a, b]. The class of the usual polynomial splines of degree n with
k fixed knots is defined by

where

They form an n + k + I-dimensional subspace of C[a, b]. Each function
s E Sn.k is in en- 1 [a, b] and the restriction of s to the interval [Xi' Xi +1],

i = 0, ... , k, represents a polynomial of degree n.
It is well known that a function in C[a, b] in general has more than one

element of best approximation in Sn.k .
We need the following restricted interpolation property for spline func­

tions (see Schumaker [14], Karlin [10]).

2.10. THEOREM. The determinant

o(0, ... , 0, Xl'"'' Xk )

t1 , ... , tn+k +1

t n
2

(t1 - X1)~

(t2 - X1)~

(t1 - xS~~

(t2 - Xk)~

is nonnegative for all a :s;; t1 < t2 < ... < tn+k+1 :s;; b and strictly positive if
and only if

ti < Xi < tn+i +1 , i = 1,... , k

Using Theorem 2.10 we can prove the following theorem, which is also
true for the more general class of Chebyshevian splinefunctions (for defini­
tion see Schumaker [9]).

2.11. THEOREM. Let E = C[a, b], G = Sn.k, fE E\G and go E PG(f). If
there exist a :s;; t1 < ... < tn +k+2 :s;; b such that

(1) t i +1 < Xi < tn +i +1 , i = 1'00" k

(2) E(-I)i(f - go)(ti ) = Ilf - go II, i = 1'00" n + k + 2, E = ±l,

then (go, f) satisfies the strict Kolmogorov-criterion.
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Proof Assume that the conditions (1) and (2) hold, but that (go, f)
does not satisfy the strict Kolmogorov-Criterion, i.e., there exists a function
g E G, g =F 0, such that, for each x E M t - yo ' we have (f - go)g(x) ;?: 0.

Since by (1) there exist points a ~ t l < ... < tn+k+2 ~ b such that
E(_l)i(f - go)(ti ) = Ilf - go II, i = I,... , n + k + 2, E = ±I, it follows
that E(-I )ig(ti ) ;?: 0, i = I,... , n + k + 2, E = ± I. From Theorem 2.1°
and condition (1) it follows that for each n + k + I distinct points UI ,... ,
Un+k+l from {t l , ... , t n+k+2} we have

o(0, ... , 0, Xl"'" X k ) =F 0.
UI ,... , Un+k+l

Therefore there exists a basis {gl ,... , gn+k+1} of G such that for each i E {I, ... ,
n + k + I} we have gi(tj ) = 0, where I ~ j ~ n + k + I and j =F i, and
E(-I)igiti ) = 1. Theng = algI + ... + an+k+lgn+k+1 with al ,... , an+k+l;?: °
and the scalars ai are not all zero.

We define

D=

and, for each i E {l,... , n + k + I},

Di =

From Theorem 2.10 it follows that, for each i E {I,... , n + k + I},

From this it follows that

°~ E(- I )n+k+2g(tn+k+2)

= aIE(-l)n+k+2gl(tn+k+2) + ... + an+k+1E(-I)n+k+2gn+k+1(tn+k+2) ~ 0.

Then, since al ,... , an+k+1 ;?: 0, for each i E {I,... , n + k + I} with

ai =F 0,
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But this shows that, for such an index i, we have gi(t j ) = 0, where j E {I, ... ,
n + k + 2} and j =F i, i.e., D i = O. Hence

D( 0, ... , 0, Xl"'" Xk ) = 0
t1 , ... , t;-l , t;+l ,... , tn+k +2

which, using Theorem 2.10, contradicts condition (I).

3. STRONG UNICITY OF BEST ApPROXIMATIONS

In this section we apply the unicity results of Section 2 to obtain statements
on strong unicity and show that strongly unique elements of best approxima­
tion (see Definition 3.1) can be characterized by the strong Kolmogorov­
criterion, if the set G is a finite-dimensional subspace in an arbitrary normed
linear space.

3.1. DEFINITION. Let G be a set in a normed linear space.

(I) An element go EGis said to be a strongly unique element of best
approximation of an element fEE if there exists a number K > 0 such that
for each g E G

Ilf - g II ~ Ilf - go II + K II g - go II.

(2) G is said to be a strongly Chebychev set if eachfE E has a strongly
unique element of best approximation in G.

It is easy to see that, in this case, Pdf) = {go}.
The following lemma proves sufficiency of the strong Kolmogorov­

criterion.

3.2. LEMMA. Let E be a normed linear space, G a nonempty set in E,
fE E\G and go E G. If(go,f) satisfies the strong Kolmogorov-criterion then go
is strongly unique element of best approximation off

Proof According to our assumption, for each g E G, there exists a
functional Lg E £1-"0 with Re L,,(g - go) ~ - K II g - go II. Then for each g E G,
ilf-gll ~ I Lif-g)1 ~ Re Lif-g) + Re Lg(g-go) + Kllg-goll =
Re Lo(f- go) + K II g - go II = Ilf- go II + K II g - go II·

Thus go is a strongly unique element of best approximation off

3.3. Remark. Let E be a normed linear space, G a nonempty set in E,
fE E\G and go E G. It is easy to verify that if

G( go) : = 111 g =go II : g E G, g =F gol. g go,
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is compact and (go, f) satisfies the strict Kolmogorov-criterion, then (go, f)
satisfies the strong Kolmogorov-criterion. Examples can be easily constructed
to show that in general G(go) is not compact, even if E is finite-dimensional
and if G is compact and convex. However, if G is a finite-dimensional sub­
space or a set with span G is one-dimensional, then G(go) is compact for
each go E G, and if G is a finite-dimensional convex cone, then G(O) is also
compact.

Using Theorem 2.4, Theorem 2.8 and Theorem 2.11 we immediately
obtain the following results on strong unicity:

3.4. COROLLARY. Let G be a nonempty set in E = IA (respectively in
E = L1(T, m)).

(1) If G is a finite-dimensional Chebyshev subspace of E then G is a
strongly Chebyshev subspace.

(2) If G is a one-dimensional convex Chebyshev set in E then G is
strongly Chebyshev.

(3) If G is a finite-dimensional semi-Chebyshev convex cone of E then
for each fEE with 0 E P(f) the element 0 is a strongly unique element of best
approximation off.

Statement (1) in Corollary 3.4 has been proved by Newman, Shapiro [12]
for E = Iq, = C(X), by Ault, Deutsch, Morris, Olson [I] for E = he} =

Co(T) and by Wulbert [17] for E = L1(T, m).

3.5. COROLLARY. In Theorem 2.11 the element go is a strongly unique
element of best approximation off

Schumaker [14] has shown that in Theorem 2.11 the element go is the unique
element of best approximation off

Now we will show that strongly unique elements of best approximation
can be characterized by the strong Kolmogorov-criterion. For this we need
the following characterization of strongly unique elements of best approxima­
tion due to Wulbert [17] for real normed linear spaces and due to Bartelt,
McLaughlin [2] for complex normed linear spaces:

3.6. THEOREM. Let G be a linear subspace of a normed linear space E.
An element go EGis a strongly unique element of best approximation of an
elementfE E\G if and only if there exists a number K > 0 such that, for each
gEG,

min{Re L(g) : L E Sf-go} ~ - K II g II .

Using standard arguments (see Kothe [II] and Brosowski [3], Lemma 2)
from Theorem 3.6 we obtain the following
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3.7. COROLLARY. Let G be a linear subspace of a normed linear space E.
An element go EGis a strongly unique element of best approximation of an
element f E E\G if and only if (go, f) satisfies the strong Kolmogorov-criterion.

Corollary 3.7 has been proved by Bartelt, McLaughlin [2] for finite­
dimensional subspaces of C(X), where the functions in C(X) are complex­
valued.

3.8: Remark. Now we can see that it is not possible to characterize
finite-dimensional Chebyshev subspaces in an arbitrary normed linear
space by the strict Kolmogorov-criterion. Because would this be true then
from Remark 3.3 and Theorem 3.8 it would follow that each finite-dimen­
sional Chebyshev subspace in an arbitrary normed linear space is strongly
Chebyshev. Wulbert [17], however, has shown that in a smooth normed
linear space no Chebyshev subspace is strongly Chebyshev.

3.9. DEFINITION. For a nonempty set G in a normed linear space E the
metric projection P: E -4- 2G is called pointwise Lipschitzian at fo E E, if
P(fo) = {gf } and if there exists a number K > 0 such that for each fEE

o
and each gf E P(f)

[I gfo - gf II ~ K lifo -fll.

We say P: E -4- G is pointwise Lipschitzian if P is pointwise Lipschitzian
at each to E F.

The following lemma, which is due to Cheney [4, p. 82], shows that point­
wise Lipschitzian continuity of the metric projection follows from strong
unicity properties:

3.10. LEMMA. Let G be a set in a normed linear space E. If go E E is a
strongly unique element of best approximation of an element fo E E then the
metric projection P: E -4- 2G is pointwise Lipschitzian at fo E E.

Using Lemma 3.10 we immediately get from Corollary 3.4 and Corollary
3.5 the following statements on pointwise Lipschitzian metric projections:

3.11 COROLLARY. Let G be a nonempty set in E = IA (respectively in
E = L 1(T, m)).

(1) If G is a finite-dimensional Chebyshev subspace of E then the metric
projection P: E -4- G is pointwise Lipschitzian.

(2) If G is a one-dimensional convex Chebyshev set in E. Then the
metric projection P: E -4- G is pointwise Lipschitzian.

(3) If G is a finite-dimensional convex semi-Chebyshev cone of E then
for each fo E E with 0 E P(fo) the metric projection P: E -4- G is pointwise
Lipschitzian at fo .
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A direct proof of statement (l) in Corollary 3.11 has been given by Freud [8]
for E = C[a, b].

3.12. COROLLARY. In Theorem 2.11 the metric projection P: E -+ 2G is
pointwise Lipschitzian at f

Corollary 3.12 has been proved by Schumaker [14].
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